Self propelled lawnmower

From DDL Wiki

Revision as of 12:42, 20 September 2008 by Rzuckerm (Talk | contribs)
Jump to: navigation, search

Contents

PART LIST

header 1 header 2 header 3
Row header 1 cell 1,2
Row header 2 cell 2,1 cell 2,2

Major Stakeholders and Needs


The self-propelled lawn mower has drastically improved the efficiency and quality of lawn mowing since the era of the push mower. The stakeholders involved include the customer, the manufacturer, the supplier of raw materials, and lawn owners. The customer can be anyone from a lawn owner to a commercial lawn mowing business. The customer must be ensured efficiency, quality, safety, and convenience. Therefore, it is essential that the self-propelled lawn mower is not too cumbersome, heavy, and well enough secured so that a customer of any size or strength can safely and effectively cut any lawn. This is also important when considering the lawn owner because the owner desires an attractive lawn, but wants to achieve this as quickly as possible so as to utilize the lawn. The manufacturer is responsible for producing a vast quantity of operative and safe lawn mowers, which can only be attained through the efficient and reliable shipment of raw materials from the raw material supplier.


DESIGN FOR MANUFACTURE

FMEA

FMEA (Failure mode and effects analysis) is used to determine the potential problems with designs. It takes each component in a mechanical system and analyzes its failure modes and effects using three main criteria. These criteria are severity of the failure (S), probability of occurrence of the failure (O), and ease of detection of the failure (D). Each of these is ranked on a scale of 1 to 10. For severity, 1 is least severe and 10 is dangerous or catastrophic failure. For probability of occurrence, 1 is very unlikely and 10 is almost certain. For ease of detection, 1 is easiest to detect and 10 is impossible to detect. Once each component is assigned one number for each of the three criteria, the numbers are multiplied together to determine the RPN (risk priority number). This number can range from 1 to 1000. The higher the RPN for a specific component the greater the chance that this component needs to be looked at and improved. Along with assigning a numerical value to the risk of certain components, FMEA also attempts to determine the origin of the problem and possible solutions to improve components. It is important to note that design controls and recommended actions are intended to help the manufacturer improve the problem.

Personal tools