Hydraulic jack

From DDL Wiki

(Difference between revisions)
Jump to: navigation, search
(Mechanical Function)
(Mechanical Function)
Line 173: Line 173:
=== Mechanical Function ===
=== Mechanical Function ===
-
The jack is made up of a series of concentric cylinders each of which is pressurized and holds differing amounts of hydraulic fluid. When the handle is inserted into the pump mechanism and moved up and down, fluid is pumped from a reservoir in the outer cylinder into the space in the bottom of the inner chamber, pushing the ramrod shell upward.  This fluid is kept inside the inner cylinder by a high-pressure valve consisting of a check valve and some form of filter to keep debris from the ball bearing. The jack can be released by loosening the valve screw at the jack’s base, thus allowing the fluid to return to the outer cylinder until the valve screw is tightened again.  This release of fluid will then lower the ramrod shell, lowering the car and allowing the jack to be removed. The ramrod also has a section that can be unscrewed, providing extra length to the mechanism.
+
 
 +
 
 +
 
 +
The jack is made up of a series of concentric cylinders each of which is pressurized and holds differing amounts of hydraulic fluid. When the handle is inserted into the pump mechanism and moved up and down, fluid is pumped from a reservoir in the outer cylinder into the space in the bottom of the inner chamber, pushing the ramrod shell upward.  This fluid is kept inside the inner cylinder by a high-pressure valve located in the base of the jack, consisting of a check valve and a debris filter to keep unwanted solids from breaking the seal created by the ball bearing. The jack can be released by loosening the valve screw at the jack’s base, thus allowing the fluid to return to the outer cylinder until the valve screw is tightened again.  This release of fluid will then lower the ramrod shell, lowering the car and allowing the jack to be removed. The ramrod also has a section that can be unscrewed, providing extra length to the mechanism.
Daniel Mark
Daniel Mark

Revision as of 23:57, 31 January 2014

Contents

Executive Summary

Daniel Tabrizi

Stakeholder Needs

Daniel Tabrizi

Usability Study

Daniel Tabrizi

Assembly

The following is an exploded view of the hydraulic jack. The parts each number corresponds to are listed below the picture and in the Bill of Materials section.

Hydraulic bottle jack assembly
Hydraulic bottle jack assembly

1. Inner Handle

2. Outer Handle

3. Alligator Clip

4. Pins

5. Pump Connector Rod

6. Link Connector Screw

7. Pump Handle Housing

8. Pump Rod

9. Pump O-Ring

10. Pump Plastic Ring

11. Pump Housing

12. Pump Housing Washer

13. Valve Screw

14. Valve Screw O-Ring

15. Valve Ball Bearing

16. Base

17. Plastic Bumper

18. Plastic Fluid Filter

19. Base Plastic Washer

20. Ramrod Rubber O-Ring

21. Ramrod Plastic O-Ring Retainer

22. Ramrod Base

23. Ramrod Shell

24. Extender Screw

25. Inner Chamber

26. Outer Cylinder

27. Rubber Plug

28. Large Plastic Cap Ring

29. Outer Cylinder Screw Cap

30. English Warnings

31. Alternate Language Warnings

Daniel Mark

Bill of Materials

The following is a list of the 32 parts that make up the hydraulic bottle jack. Most pieces are made of steel, that has been shopped in some way, usually on a mill or a lathe. The non steel parts are either rubber or plastic and are purchased or injection molded. The table can be sorted by Part Number, Quantity, Weight, Material, and Manufacturing Process.

Part Number Name Quantity Weight (g) Function Material Manufacturing Process Image
1 Inner Handle 1 78 Inner handle piece, used to pump fluid Painted steel Bent, Welded
2 Outer Handle 1 134 Outer handle piece, used to pump fluid Painted steel Bent, Welded
3 Alligator Clip 2 <1 Used to hold Pins (#4) in place Aluminum Purchased
4 Pin 2 7 Used to hold pump structure together Steel Purchased
5 Pump Connector Rod 2 25 Connects Pump Handle Housing (#6) to Base (#16) Painted steel Stamped
6 Link Connector Screw 1 5 Connects Pump Connector Rods (#5) to Pump Handle Housing (#7) Painted steel Riveting
7 Pump Handle Housing 1 98 Connects handle (#1&2) to Pump Rod (#8) Painted steel Stamped, Bent, Welded
8 Pump Rod 1 42 Moves up and down to pressurize the jack Painted steel Automated Lathe Process, Drilled
9 Pump O-RIng 1 <1 Creates a pressure seal for the pump Rubber Purchased
10 Pump Plastic Ring 1 <1 Holds the Pump O-RIng (#9) in place Plastic Purchased
11 Pump Housing 1 74 Limits the Pump Rod (#8) motion to 1D Painted steel Automated Lathe Process, Threaded
12 Pump Housing Washer 1 1 Provides separation between the base and the bottom of the Pump Housing (#11) Steel Purchased
13 Valve Screw 1 18 Allows for release of pressure in jack Painted steel Automated Lathe Process, Threaded, Stamped
14 Valve Screw O-RIng 1 <1 Creates pressure seal around the Valve Screw (#13) Rubber Purchased
15 Valve Ball Bearing 3 1 Creates or releases liquid seal allowing for flow between chambers Steel Purchased
16 Base 1 1049 Holds entire jack together, houses the various valves in the jack Painted steel Cast Steel, Automated Mill Process, Threaded
17 Plastic Bumper 1 <1 Holds Valve Ball Bearing (#15) in place Plastic Injection Molded
18 Plastic Fluid Filter 1 <1 Filters debris during liquid flow Plastic Injection Molded
19 Base Plastic Washer 1 <1 Seals base of Inner Chamber (#25) Plastic Purchased
20 Ramrod Rubber O-Ring 1 <1 Creates pressure seal around Ramrod Shell (#23) Rubber Purchased
21 Ramrod Plastic O-Ring Retainer 1 1 Holds Ramrod Rubber O-RIng (#20) in place Plastic Purchased
22 Ramrod Base 1 98 Keeps liquid out of Ramrod Shell (#23) and prevents sticking to Base (#16) Steel Automated Lathe Process
23 Ramrod Shell 1 310 Moves up and down lifting and lowering anything on the jack Steel Automated Lathe Process, Threaded
24 Extender Screw 1 176 Allows for extra heigh to be reached by the jack Steel Automated Lathe Process, Threaded, Riveted
25 Inner Chamber 1 314 Constrains Ramrod Shell (#23) to 1D motion Steel Automated Lathe Process, Threaded
26 Outer Cylinder 1 405 Houses liquid Painted steel Stamped, Bent, Welding
27 Rubber Plug 1 <1 Allows for initial filling of jack with hydraulic fluid Rubber Purchased
28 Large Plastic Cap Ring 1 <1 Prevents rubbing between Outer Cylinder Screw Cap (#29) and Outer Cylinder (#26) Plastic Purchased
29 Outer Cylinder Screw Cap 1 160 Caps jack and prevents pressure leak Painted steel Cast Steel, Automated Lathe Process, Drilled, Threaded
30 English Warnings 1 <1 Provides warnings in English Paper Printed
31 Alternate Language Warnings 1 <1 Provides warnings in Spanish and French Paper Printed


Daniel Mark

Product Functionality

Step-by-Step Instructions

Step 1.
Step 1.
Step 2.
Step 2.
Step 3.
Step 3.
Step 4.
Step 4.

To raise:

  1. Turn valve screw clockwise to tighten it and create a pressure seal
  2. Place jack under car and turn extender rod until it reaches the bottom of the car
  3. Insert handle into pump handle housing
  4. Raise and lower handle to pump up car

To lower:

  1. Turn valve screw clockwise
  2. Twist down extender rod
  3. Pull jack out from under car

Mechanical Function

The jack is made up of a series of concentric cylinders each of which is pressurized and holds differing amounts of hydraulic fluid. When the handle is inserted into the pump mechanism and moved up and down, fluid is pumped from a reservoir in the outer cylinder into the space in the bottom of the inner chamber, pushing the ramrod shell upward. This fluid is kept inside the inner cylinder by a high-pressure valve located in the base of the jack, consisting of a check valve and a debris filter to keep unwanted solids from breaking the seal created by the ball bearing. The jack can be released by loosening the valve screw at the jack’s base, thus allowing the fluid to return to the outer cylinder until the valve screw is tightened again. This release of fluid will then lower the ramrod shell, lowering the car and allowing the jack to be removed. The ramrod also has a section that can be unscrewed, providing extra length to the mechanism.

Daniel Mark

Design for Manufacturing and Assembly (DFMA)

Derek Lessard

Failure Modes and Effects Analysis (FMEA)

Gloriana Redondo

Design for Environment (DFE)

Melanie Jasper

Team Member Roles

All

References

All

Personal tools